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Abskact. BFV-BRST charge for quantum algebras is not unique. DiRerent constructions of 
it in classical and quantum phase space for the universal enveloping algebra of the q- 
deformed sl(2) are discussed. I n  the quantum framework a positive definite scalar product 
is used to introduce a CO-EFT-ERST charge to study the cohomology problem by means of 
the techniques of the nondeformed case. Moreover, deformation of the phase space without 
deforming the generators ofsl(2) is considered. R-q-deformation of the phase space is shown 
to yield the Witten’s second deformation for sIf2). To study the BFV-ERST cohomology 
problem when both the quantum phase space and the group are deformed, a two-parameter 
deformation of sI(2) is proposed, and its BFV-ERST charge is given. 

1. Introduction 

Gauge symmetries of a Lagrangian manifest themselves as first-class constraints in the 
Hamiltonian framework. They are in involution on the constraint surface, and in Yang- 
Mills theories they constitute a Lie algebra after quantization (in the absence of anomal- 
ies). These constraints can be employed in constructing a fermionic, nilpotent operator, 
known as Batalin-Fradkin-Vilkovisky-Becchi-Rouet-Stora-Tyutin (BFV-BRST) charge 
[I] ,  after quantizing the related phase space and introducing ghost variables (fields). 
Although ghost variables are an artifact of the quantization procedure, they can be 
incorporated into classical mechanics by endowing classical phase space with the gen- 
eralized Poisson brackets. Hence it appears that one can establish a BFV-BRST charge 
either in a quantum or classical framework [2]. 

BFV-BRST charges are useful in many aspects. Classical BFV-BRST charge can be 
employed to find the action which one uses in the path integrals of the underlying 
theory. Another important aspect is the fact that cohomology classes of B F V ~  BRST 
charge are equated with physical states. The importance of the latter property is twofold: 
(i) one can reveal geometric properties of the theory, (ii) one can utilize the related 
BFV-BRST charge to obtain a gauge field theory whose solutions of equations of motion 
coincide with the physical states of the underlying theory. 

The above discussion suggests study of the quantum groups [3-71 in a similar 
manner. Construction of the relaled BFV-BRST charge is important not only in its own 
right, because it may elucidate the geometric structure of quanlum groups, but also to 
extract clues useful in formulating related gauge theories. In fact, there have been 
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some attempts to formulate a quantum group gauge theory [S, 91, but a complete 
understanding is lacking. 

To keep the resemblance with the usual constrained Hamiltonian systems, we makc 
a distinction between ‘quantum groups’ realized in a classical phase space endowed 
with the Poisson brackets, and those realized in terms of commutators after quantization 
[8, IO]. The former will be noted as ‘q-deformation’ (or classical q-deformation) and 
the latter, which is the one commonly called a quantum group, as ‘ti-q-deformation’ 
(or quantum q-deformation). 

ti-q-deformed algebras, which are the deformation of Lie algebras, appeared before 
their classical counterparts. Hence the properties of the former are well established, but 
to investigate the latter there are different methods which have been proposed recently 
[8- 121. 

A powerful way of defining quantum mechanics as ti-deformation of the classical 
one is to utilize the Moyal star product [ 131. Similarly, a * product is used to acquire 
q-deformations of classical phase space. Moreover, the * product also establishes the 
distinction between the ti- and q-deformations, and it  is useful in introducing multi- 
parameter deformations. Thus to deform the classical phase space we will utilize the * 
product introduced in 1121. 

When we deal with the Lie algebras or with the usual constrained Hamiltonian 
systems, construction of BFV-BRST charge is unique up to canonical transformations. 
For classical and quantum q-deformed algebras it depends on the differential calculus 
adopted over the group or on the behaviour of constraints. Some different possibilities 
are considered in [ 14-16] for the ti-q-deformed sl(2) algebra. 

One should first answer the question: how many ghost fields are needed? In [I41 
Woronowicz’s deformation of sf(2)  is considered and three ghost variables are taken 
to be one-forms on s l 4 2 ) .  In fact, this seems to be the natural choice when one deals 
with this realization of s f 4 2 ) .  In [I51 U p q ( d ( 2 ) )  is studied. There also, three ghost 
variables are used. demanding that the related q-h-deformed BFV -BRST charge be a 
polynomial in qn. Although this is quite plausible (q” appears in comultiplication of 
Ufi-,(s/(2))), it is not the unique choice: the form (or the number) ofconstraints dictates 
the number of ghost variables. In [15] it is assumed that there are three constraints 
behaving as X + ,  and [HI,. But a priori one does not know the structure of the con- 
straints. There may be different choices: in [8] a candidate for a quantum group gauge 
theory is shown to possess infinite gauge field components (hence infinite constraints) 
depending on the representation of the universal covering algebra. In [I61 a ‘E-q- 
deformation of the BRST algebra’ of d(2)  is given by considering the related fields in 
the fundamental representation. Thus there the number of ghost fields is taken to be 
four. 

We deal with the deformations of sf(2) and choose to work with three ghost vari- 
ables. As is mentioned above, for ~ f ~ - ~ ( 2 )  this is the natural choice. For U+q(sf(2)) 
this choice makes the comparison of the results with $42)  explicit. Moreover, it lets 
one formulate a BFV-BRST charge for a deformation of the ti-deformed phase space 
and algebra simultaneously with different parameters (see section 4). 

In section 2, two ‘q-classical’ systems are considered. First, we deal with the phase 
space endowed with the usual Poisson brackets but a q-deformed ‘classical s/(2)’ algebra. 
We introduce three ghost fields and discuss two different BFV-.BRST charges. One of 
them is the simplest realization: linear terms in the ghost variables are taken to be 
linear also in the ~((2) generators, so that there are at most three ghost couplings. The 
other one possesses five ghost couplings because, one of the linear terms in the ghost 
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variables is taken to be linear in [ H / 2 ] , .  Then, a * product is defined and used in 
construction of the 'q-classical mechanics' where the enlarged phase space with three 
ghost variables is endowed with a new generalized bracket. This formulation is used to 
obtain a BFV-BRST charge for sI(2) generators. 

In section 3, we perform R-deformation of the cases studied in section 2. The first 
of the q-classical systems of section 2 leads to Ufi-,(sl(2)). The BFV-BRST charge which 
possesses a linear term in [ H / 2 ] ,  is worked out. We show that in terms of a positive 
definite scalar product it is possible to introduce a CO-BFV- BRST operator whose anticom- 
mutator with the BFV-BRST charge gives the quadratic Casimir of Ufi-&I(2)). Thus, 
this approach yields the formulation of the BFV-BRST cohomology of Ufi-,(sl(2)) similar 
to the usual case [ 17, IS], which was missing in [ 151 because there it was supposed that 
one of the constraints behaves like [HI , .  The latter q-classical system after quantization 
leads to fi-q-deformation of the phase space and the usual sI(2) generators satisfy 
Witten's second deformation of s l (2)  (61. We replace the non-vanishing brackets of the 
ghost variables with the usual anticommutators, but we demand that the anticommut- 
ator of the terms of the BFV-BRST charge which are linear in the ghost variables with 
themselves generates the deformed commutators of s l 4 2 ) .  We find the related BFV- 
BRST charge and observe that the requirements on the ghost variables lead to the result 
that they behave like one-forms on s&-,(Z), and the charge as exterior derivative. 

In section 4, quantum phase space and 6-deformed algebra are deformed with 
separate parameters. Indeed, this is a two-parameter deformation of SI&). This two- 
parameter deformation allows us to write a BFV-BRST operator which interpolates 
between the BFV-BRST charges of the different realizations of the quantum deformation 
of sI(2) studied in the previous section. 

In section 5 the results obtained, and further perspectives are discussed. 

2. Classical BFV-BRST charges 

We deal with a one-dimensional system (the usual time coordinate), and RZ phase 
space. In terms of the phase space variables ( p ,  x), satisfying the usual Poisson brackets 

{ P ,  XI = 1 

the 'classical s/(2)' algebra 

{H', X!} = %U'", {X? ,X!} = H o  

can be realized if the generators are taken to be 

(2) Ho=Zpx x;=-4x xo_=-p  1 2  x. 
d 

We consider 'q-classical systems' defined as: 
( I )  Poisson brackets are standard, nevertheless the 'classical q-deformed algebra 
U,(sl(2))' is functionally realized in C"(R2). 
(2) The phase space is endowed with q-deformed Poisson brackets, but the generators 
are as in (2). 
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(1) In the phase space endowed with the usual Poisson brackets a functional realiza- 
tion of the 'classical Uv(sl(2))' 

can be achieved in terms of [ IO] 
- I  + cosh(2apx) 

2$xa sinh a 
H = 2px x+ = -J&, x- = (4) 

where q=e'. 
Let us introduce some ghost variables by enlarging the classical phase space endowed 

with the generalized Poisson bracket structure, to write a BFV-BRST charge. Let us deal 
with the cases where there are three ghost variables, but the assumed constraint struc- 
tures are different from [15]. 

After choosing three ghost variables and their momenta, we should also define 
generalized Poisson brackets of them. This depends on the conditions which we require 
that the BFV-BRST charge satisfies. 

To assume that the constraints behave as X* , and H ,  seems to be the simplest 
choice. By using 

eolH-e-mH a 2 ( a H ) %  = H -  - 
ea - ea - e-Q * = o  (U(+ l)! 

a m  a2H2 
ea -e-* k=i k2n2 

= H -  n (I+---) 

= H f ( I f , q )  ( 5 )  

and introducing the fermionic (ghost) variables (ci, n,), i , j = O ,  f, -,which satisfy the 
usual generalized Poisson brackets 

{ X i ,  d )  = s j  {nt, n,) =o  { c', c'} = 0 (6) 
one can write the classical BFV--ERST charge as 

I 0, =c+X+ + C-X- + - cOH- &f(q, H)C+C-ZO + $ c ~ c ~ z +  - $ C - C ~ X - ,  (7) Jz 
The generalized Poisson brackets are 

{f g) = _ _ - _  af ag af ~+--+-- ag af ag af ag 
ap ax ax ap art acz sc' ari  

One can easily observe that Q satisfies the classical nilpotency relation 

(a,. a,; =o. 
We suppose that the generalized Poisson brackets of the ghosts are non-deformed 

due to the fact that we did not deform the original phase space. But the ghost variables 
are associated with the gauge (group) generators, so that deforming their Poisson 
brackets, even if the original phase space is not deformed, is not ruled out. 

Another possibility is to suppose that the constraints behave as X + ,  and [ H j 2 J v .  The 
choice where [ H / 2 ] ,  is replaced by [ H I ,  seems more natural because in the coproduct of 
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the universal enveloping algebra of q-deformed sl(2), qH appears. Nevertheless, in the 
following section we show that our choice possesses more similarities with the usual 
BFV-BRST cohomology analysis. The related classical BFV- BRST charge satisfying 

@2,n2) =o 
is given by 

n2=x+c+ +x-c-+ ( q f q - y  

(2) As announced before a * product approach is preferred to q-deform phase space 

Attach a two-dimensional internal space parametrized by c, and p ,  to each point 
(we follow [ 121). 

of the phase space by defining 

(9) = ei./P, x E  = x e'Y5 P P  

Then define a * product of any functions f and g as 

this * product is associative and can be used to define the q-deformed Poisson brackets 

where q=exp(y')). Let us deal with the functional realization of classical s1(2), given in 
(4) by replacing x-+x5,p+pP : 

1 xy =- H'=2pP*,x< x: = -$X< G P P  * P P  * X E .  

These satisfy the following q-deformed Poisson brackets 

{ H Y , x : } g =  k2AXL { X ,  xY);= (A/2)(q"2+ q-1'Z)H 

where 

I t  is a 'classical Lie algebra' in terms of the new brackets, thus we obviously need three 
ghost variables and their momenta for the BFV-BRST analysis. Should the generalized 
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Poisson brackets of the fermionic ghost variables be deformed or not?? It is completely - 
arbitrary. Hence we suppose that they satisfy the usual conditions 

i#j .IT. = -E .Z. 
' I  I >  

- t  c'c'= -cc 
and 

{Ct, nj}'=sj. 
Then, the generalized q-deformed Poisson brackets are 

where ccf) indicates the ghost number: 

& ( C i ) = - E ( n j ) =  1 E ( J g ) = E ( f )  + E k ) .  

Hence we write the BFV-BRST charge as 

~ ~ = f f ~ ~ t X ~ c ~ + X L ~ ~ - A n ~ ~ ~ c ~ t A n ~ c ~ ~ ~ - ( A ~ 2 ) ( q " ~ t q ~ " ~ ) ~ ~ c ~ c ~  (15) 

which satisfies 

{Q3, &)'=0. 

One can observe that if we keep (13) but deform (12), a BFV-BRST charge which 
possesses terms linear in tbe generators as in (15), will not exist. 

3. Quantization 

When we deal with the non-deformed phase space, there is no difference between 
introducing the fi-deformation in terms of the Moyal brackets or canonical quantization 
as far as the purposes of this section are considered. If we drop * in the former formula- 
tion, both of them will yield the following fundamental commutators 

[ p ,  xl=-ifi. (16) 

Of course, when (16) is considered as Moyal bracketsp and x are classical variables, 
but they are operators in terms of the canonical quantization. 

After an appropriate rescaling of the generators, and replacing the Poisson brackets 
with commutators, (1) becomes the usual sl(2) algebra and ( 3 )  yields fJfi-&@)) [IO]: 

[ H , X * I = ~ X * ,  [X+,X-l=[Hl,. (17) 

[ x i ,  ci]=-ifi& 

The ghost fields, then, satisfy 

where [f; g] =fg- (-)ccflccs)gJ For simplicity we rescale the phase space variables such 
that 

[p ,x I= l  [ Z j ,  c']=S:'. 

t In the q -  %deformed case there is somehow a natural answer to this. See seclion 3 
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Q! = 0. (18) 

22s 

Under the fi-deformation al+QI which is in the same form but satisfying 

The BFV-BRST charge for (17), Qz,  satisfying Q:=O, when the constraints are 
supposed to behave like X&, and [ H / 2 ] ,  is no longer similar to (X), but 

To obtain the physical states or the solution of the BRST cohomology, let us consider 
the space of the states 

3 1  

I = O  I! 
The Y o )  coefficients are some complex functions on the space where the constraints or 
the generators act. Action of ni OR the states is 

When one deals with a Lie algebra the coefficients Y;'!,, can be considered as I-fonns 
on the algebra, and the indices are raised or lowered by the Cartan metric of the algebra. 
Thus one can introduce the scalar product [18] 

Y ( c ) =  1 - 8 .  C i 9 ! 6 ' ! , .  

( I n ) ! : !  ,,=Yi:;" f = O ,  1 , 2 .  

which is positive definite. With respect to this product 
C'+= n/. 

QL obtained from the BFV-BRST charge QL of the Lie group is also nilpotent. When 
we deal with sI(2) and demand that [eL, QL] is a generalization of the quadratic 
Casimir of the algebra, in the basis we adopted, the scalar product should also yield 

XL = x *  H~ = H .  (22) 
I n  the case where we assume that the constraints behave IikeX,, H ,  the conjugation 

defined by ( 2 1 )  and (22)  leads to Ql, which is nilpotent. Unfortunately, when the 
constraints are supposed to behave like X I ,  and [ H / 2 ] ,  Q: obtained from (19) is not 
nilpotent. This is due to the fact that in the former case BFWBRST charge is insensible 
to the ordering of ghost variables, but in the latter a change in the ordering of ghost 
variables would create some terms which spoil the nilpotency condition. 

To overcome this difficulty let us introduce the following positive definite scalar 
product 

where goo- - g  + - = g - + =  1, and @:!{! is the complex conjugate of 
this product the conjugate of the generators and the ghost variables are 

With respect to 

Xt =x* P = H  c0*=zo - I -  c-*=IZ+ (24) C+t - 
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where (f*)* =J Conjugation of Ql yields the following CO-BFV-BRST charge 

which is nilpotent and [ e l ,  Q?] is a generalization of the quadratic Casimir of $42) .  
This justifies the choice of the normalization factors of the terms linear in the ghost 
variables. 

In terms of the conjugation given in (24), the CO-BFV-BRST charge derived from Q2 
is 

Q~=x+s-+X-x+t(q+q-1)"2 

(q + 4-1) 'P - I  -1,"- 4 - 4  cOa-a++ 
q ' / 2 -  -112 

H --H 

4 
- k + q  qH/2-q--H;2 

This nilpotent charge, as in the usual case, can be used to define 

[Q2, Q B I x - c = o = C q  

where C, is the quadratic Casimir of L4-,(s1(2)) [ 19,201: 

Hence by using the positive definite scalar product (23), the physical states can be 
identified with the states w satisfying 

(Q+ e*)'@ = O  Qw=O Q*w=O 

where Q and Q* are given either by (18) and (25) or by (19) and (26). At  zero ghost 
number the cohomology classes given by (19) include the ones found in [ 1.51, and the 
states 02  satisfying Q2w2=0, contain the singlets of Ufi-Jd(2)).  Although at zero ghost 
number Q l o l  = O  yields the states q , ,  which are singlets of s1(2), by including ghost 
number one sector the other states of U f i 4 d ( 2 ) )  can be obtained. 

If we fi-deform the phase space after the qdefomation we obtain [ 121 

x*,np-qp*vnx=-ifiq"2. (28) 

The *rfi product is defined as 

f ( s  P)  * Y d  g(x2 P )  
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where in the sums the first two derivatives act on the left and the others on the right- 
hand side. 

For our purposes, once the Fideformation is achieved we can forget about the *?,, 

and also set ti= 1, to obtain 

xp-qpx=-iq1'2. (29) 
By keeping the form of the generators as in (2) we obtain 

HX--qX-H=-i2q1'2X- (30) 
HX+ -q-'X+H=i2q-''2X+ 

x+x- -$XX+= (-i/2)(q'/2+d'z)H. 

After rescaling as 
X, 'iq-l/2(ql/2 + q1/2) 1/2 H 4 2 H  

and setting 

q=rz 

one can see that the relations given in (30)-(32) read 

r-'HX--rX-H= -X- 
rHX+ - r-'X+H = X+ (33) 
r - 'XJ- -?XX+ = H 

in which we recognize Witten's second deformation [6]. 
When we q-&deform the phase space a natural requirement for the BFV-BRST charge 

is to demand that the anticommutation of the terms which are linear in ghost variables 
and the generators with themselves generates the deformed commutators of the algebra 
(left-hand side of (33)). For the deformed algebra (33), this condition leads to 

v -  v-+ = r4,  (34) -a-? c l$= -vgcjc' v"=O yo+ = t.2 
These relations could also be obtained by demanding that c' behave like one-forms on 
s L J 2 )  [51. 

Although one can also deform the commutators, it is not necessary. In fact, we deal 
with the ghost variables satisfying (no summation over i )  

[ni,cI]=6: = =; =O. (35) 
Now the associativity leads to 

nz.=-vyjp* J i  r,g= - v j f c j n j .  
' I  

Hence the BFV-BRST charge which satisfies Q:=O, is 

Q3= Hco+X+c++X-c- - r(n+c'c'+ n-c'c-) -r2noc+c- - (r-r-')n-n+c'c'c-. (36) 

One can observe that the choice (34), (35) follows if we require that Q, behaves 
like the exterior derivative, so that [e3, cl  coincide with the Cartan-Maurer structure 
equations on ~ 1 4 2 ) .  

To find solution of the cohomology of Q3 one should define a state space endowed 
with a scalar product, and introduce the CO-BFV-BRST charge. A choice is given in [ 141. 
The choice should be dictated by the desired physical content of the gauge theory. This 
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is still obscure to us, so that the issue of defining a scalar product and CO-BFV-ERST 
charge is not discussed here. 

4. Two-parameter deformation 

In the procedure which we follow, the next step is obviously to deform the h-deformed 
phase space as well as the fi-deformed algebra with different parameters. This will lead 
to a two-parameter deformation of &(2). 

Recently, attention has been paid to multiparameter deformations of Lie groups 
[21]. Because of the fact that the requirements are different, not all of these deformations 
fulfil the condition of being a Hopf algebra. Indeed, the two-parameter deformation 
which we introduce helow does not seem to be Hopf algebra for all values of the 
parameters. 

In this section deformation of the quantum phase space is supposed to be realized 
as given in [4], which is known to be equivalent to Witten's deformation (33) [20], and 
deformation of the algebra i s  given in (17). If we demand to obtain one of the deforma- 
tions at some special values of the deformation parameters, it is quite natural to consider 
the following two parameter deformation of sIa(2). 

1 

f l  

1 

v 

p Z ~ x +  -? X + H =  ( I  + p 2 ) x +  

~ ' x - H - ,  HX- = (1  + p2)x- 

1 
- X + X -  - p X - X t  [HI,  
Ir 

which can be noted as Li,(~l~-~(2)).  

satisfying (no summation over I) 
To keep the resemblance with p = 1 and q= 1 ( 

- 2 -  "-0 
[@i, $I= 61 v i - q  - 

(37) 

oduce the ghost fields 

The BFV-ERST charge which leads to the one given in [I41 for q= 1, and to the one 
given in [I51 for p = 1, moreover satisfying Q2=0, is 

Q =X- q-+ X+q+ + [H],qo- p f i oq+q- -  F ( H )  i i+ qt  qo 

+ ~ ( ~ ) i _ q ~ q -  - ( G ( H )  + ~ ( ~ ) ) @ - i + q + q O q -  (40) 
where 
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~ = p - ~ ( p - ~ H + p l +  I )  

229 

b = p 2 ( p ’ 2 H - p 2 - 1 ) .  

The form of this B F V - B R S T ~ ~ ~ ~ ~ ~  in ghost variables is the same with (19) and (36). 
This follows from the fact that non-vanishing commutators between the ghost variables 
in all the cases are kept non-deformed. 

To find solutions of the Q-cohomology, one should introduce a state space and a 
scalar product. Obviously, there are different choices and as is mentioned above, it is 
closely related to the desired physical properties of the system. 

5. Discussion 

Let us consider the results achieved for ‘classical U9(s1(2))’ and the deformation of 
phase space separately. In the former case we have shown that different BFV-BRST 
charges can be written, and have observed that the BFV-BRST charges obtained in the 
classical and in the quantum framework are very similar. Moreover, the realization 
given in (19) by making use of the positive definite scalar product (23),  allows us to 
formulate the cohomology problem of the deformed algebra, similar to the usual one 
given in [17, I&], which was missing in [U]. 

Generators of sI(2) in q-deformed phase space still satisfy a ‘classical Lie algebra’ 
in terms of the new brackets, so that the related BFV-BRST charge (15) possesses at 
most three ghost couplings. In fi-q-deformed phase space, it is shown that the generators 
of sI(2) satisfy the relations of s l 4 2 ) ,  (30)-(32), and the BFV-BRST charge possesses 
also a five-ghost coupling term. 

The desire to incorporate the two different approaches to quantum groups led us 
to define a two-parameter deformation of sI(2). Because of not deforming the non- 
vanishing generalized commutators of the ghosts we were able to find a BFV-BRST charge 
(40) which interpolates between the BFV-BRST charges of the different realizations of 
the one-parameter deformation of sl(2). 

There are mainly two future perspectives regarding the BFV-BRST charges presented 
here: (i) to study their cohomology problem, and (ii) to show if they can be used to 
define a BRST field theory which leads to a gauge theory of q- or fi-q-deformed sl(2). 

The properties of the two-parameter deformation of sl(2) presented in section 4, 
are unknown. It would be useful to understand the algebraic features of it, to incorpor- 
ate the different realizations of the quantum q-deformed sl(2).  

Here, we considered only a one-dimensional system and R2 phase space. To obtain 
a more realistic system, one should study either a higher dimensional system or a larger 
phase space. The former can be useful for studying gauge field theories whose gauge 
group is a quantum group. Alternatively, the latter can be used to define a gauge theory 
of quantum groups by means of BRST gauge theory. 
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